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RECTANGULAR-WIND-TUNI@ BLOCKING CORRECTIONS USING

‘ THE VELOCITY-R4TI0 METHOD

By Rudolph W. Hensel

HJMMARY

In this re~ort calculations of the ratios of the velocity increments
at test bodies ~o those at the tunnel walls caused by the sofid blocking
of these bodies within the walls of a closed rectangular wind tunnel are
presented. The bodies treated include ttwo-ctbnensionalairfoils; small
bodies of revolution; straight, untapered, finite-span wings of varying
span; and swept, untapered, finite-span wings of vary3ng span. It is
shown that, after wake blockhg effects have been removed, the present
method furnishes semiempirica.1blocking corrections for most wind-tunnel
models and their components. Results are presented for all the cases
mentioned. The tes~section proportions of the Southern California
Cooperative Wind Tunnel at the California Institute of Technology (viz.,

ratio of height to width equal to lfi) are used in calculations.

INTRODUCTION

The velocity-ratio method of obtaimbg blocking corrections h
high-speed, subsofic wind tunnels was first solved by Gbthert for the
cases of a body of revolution and of a finite-span wing of span-to-
diameter ratios of 0.25 and 0.S in a closed circular tunnel (reference 1).
This work was later exbended in an unpublished report to the cases of a
wing having a span-to-diameter ratio of 0.75 and of a wing spanning a
closed circular wind tunnel.

k the present report, the methods of reference 2 are used to extend
the previous results for straight wings of varying span in a closed rec-

l-lrtangular tunnel whose height-to-wid~h ratio is 2. For swept wings, a
slightly dMferent approach involving the use of line doublets has been
utilized.

This work was done by the Ca13d’orniaInstitute of Technolog and
has been made available to the NACA for publication because of its
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2 NACA TN 2372

general interest. The author wishes to express his thanks for the
assistance rendered by Dr. Clark B. Millikan, Mr. Josiah E. Smith,
and Mr. Richard W. Bell in the preparation of this report, and’also to
thank Misses Dorothy Lodter and Donna Deeney for their performance of
the extensive computations.
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SYMBOLS

distance of point source and sink from doublet origin

center, or axis of test section

whg chord

ma2dmum diarheterof a bdy of revolution

x-coordinate of a source segment

tunnel height

length of a body of revolution

Mach number, corrected for blocking

tunnel calibration Mach number, uncorrected for blocking
(may include strut calibration)

integer, indicating image number in y-direction

integer, indicating image number in 5direction

line-source strength, square feet per second

point-source strength, cubic feet per second

distance from source

veloci~ increment

remainder

or doublet element

shall be obtained;

to point at which

r2=x2+#+z2

semispan of model wing (measured in y-direction)

madmnm wing thiclmess

,.
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U1

u

~x

w
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x

Xl=x

Y

total @al velocity increment in test section due to all
images except primary one (model)

total axial velocity increment in test section due to all
images, including prhmry one (model)

-al velocity increment in test section due to a single
image

tunnel axial velocity

velocity inx-direction

tunnel width

radial coordinate; w2=

axial coordinate

lateral coordinate

.

due to a point doublet

Y, ‘Y-W
J-

2 vertical coordinate

Z1’z-m

r

P

pl

A

AO

*

line-doublet strength, cubic feet per second

point-doublet strength, feet4 per second

angle of sweep of a given wing at any Mach number ~

equivalent angle of sweep at Q = O

Stokes stream function, cubic feet per second

..
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4 NACA TN 23’72

Subscripts:

A, B, C, and particular points in test section or on test-section
so forth walls

For further explanation of the symbols see figures 1 to 4.

DETERMJWTION OF INTERFERENCE VELOCITIES

Two-Dimensional Wing

A two-dimensionalwing may be represented by a chordwise distri-
bution of infinite line somces and sinks. The axial.velocity increment
produced by any single infinite-line-sourceimage (fig. 1) is

at a point A in the center of the basic

Omitting the central source and summing

(1)

tunnelj rA 2 =n2H2 + g2. Thus, :
.

for the remainder gives

Similarly, the axial velocity at the wall of the tunnel, point B,
including both the central source and all the images, is

1

1 I

(2)

(3)

(4)

,.,
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NACATN 2372 5’

For normal chord sizes, g is small compared with the tunnel dimensions

()

12
and hence g2/H2 may be neglected in comparison with n2 or n - ~ ,

with the result

r
~

uA n.1 n2 1—= =—~1 3
‘%1

(5)

n=l

‘(. )

12
n-—

2

Thomhas shown in reference 2 that qg for a single line source may be

replaced by ~qg, the distribution of sources and sinks representing

the wing section. Therefore, since the ~qg terms would also cancel
each other, the result obtained for a single
is identical to that for a complete wing.

Body of Revolution

A body of revolution may be represented

line source in equation (~)

by a distribution of point
sources and sinks along the tunnel center line. The -al velocit~
increment due to a single image point source (fig. 2) is

(6)

at point A in the center of the basic tunnel,
‘A2

= g2 + n2H2 + m2w2.
Thenj substituting into equation (6), ‘

= q’g
‘1A

4nW3

1

(g2 2 \
3/2

~+n2E-+m2—
(7)

\w~ .Wz ,

Again omitting the central source and summing for the remainder with the

assumption that g2/W2 is negligible compared with n2 ~ and m2 gives
W2

—— —. .—— ——-—
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be shown that the

and f.
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+%#7~+%Z#Y’g .

(8)

w~ velocities uTB and U’c are

m

+2 z
n=l

()
m=()[1

1
~2H2

()
n-——

2 ~2

7

.1
3/2

(9)

1
3/2 O= 3/2

+2

( )1zn2f+m-:2

[ 1]

12
;:;, (m ‘ )--

~2 2

(10)

The latter two equations include the effect of the primary source, which
must be omitted L the CdXdatiOn of uA.

Straight, Untapered, Finite-Span Wing

A finite-span wing may be represented by a distribution offinite-
length sources and sinks. The -al velocity increment produced~ a
single source element is (fig. 3), for this case,

q dyl m WI
dul = — sfie=—

4TU?2
(11)

43’rr3

.

L,

For the point A in the center of the basic tunnel, the general expres-
sion for the square of the distance from the source element is

‘A
2=g2+n2H2+ (mw + yJ2. Integration across the image span gives

the total contribution at A of one image; namely,

c,
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J
s

U1
A=%.=

[ 1p 3/2
~2 ‘ ‘2H2 + (w + Yl)

Performance of the integration leads to the

w

[

Inw+s

‘1A= 4n(n2H2+g2) [g2+n2H2+ (~+s)2]1’2

which is the same as equation 16, reference

nondimensional
2

and again neglecting the ~

r

L

(12)

result

row-s

}
[gp +n2H2+ (N - s)2]1/2

(13)

2. M-g equation (13)

terms give

--
:[n2$:()] 12 1/2

m-~ w

(u)

As before for the case of the body of revolution, the total velocity
increment is

(15)

Howeverj it will be noted that the single summation for which n = O
0leads only to the indeterminate quantity6. This may be evaluated by

the application of Lt Hospitalrs Rule, finally giving for a single
source line

— ————.—z ._ — -— —
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m

x
m.1

().=0

Similarly, the total axial velocity increments
the walls of the tunnel are

at points B and C on

7

(16)

(17)

L
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.

and r

r I

(18)

Furthermorej at w“point y along the span of the wing, the result is

m

(1()Y

TX
+:

1 ‘-ii
n=l m=-rn $

{

, l/2-
“2 _ n2d+

~2
IF

L- .

1

(19)

a

As before, the primary source line which corresponds to the wing is not
included in calculating the velocity increments at any point.in the wing.

-. — . . ——____ _ ___ .



10 NACA TN 2372

%ept, Untapered, Finite-Span Wing

In the preceding treatment for unswept bodies the analyses were
carried out for single line and point sources as a shplification fon
bodies which couldbe represented by a combination of line and point
sources and sinks. Thus, for a given value of g, all the image
sources are in the same plane and a constant distance from the plane
of A, B, and C, namely, g. Obviously, this condition no longer holds
for swept bodies in which g would be a function both of span and
angle of sweep, and hence the simplified treatment is no longer appli-
cable. It is then necessaq to proceed to a more general representation
of the flow field involving the.use of both sources and sinks. One of
the simplest of
used.

The Stokes
(reference 3)

such combti-ationsis the doublet and that is what is

stream function for a point doublet is given by

2V-=-P’=
.

(20)
+

‘2W 1

where pr = —. The point-doublet strength PI remains finite as a,
4TI

the distance of the point source and sink from the doublet origin,
approaches zero and ql goes to inftity. The velocity in the x-direction
caused by the doublet element. whose axis .is~arallel to the x-as
(fig. 4); is given by -

Then, for a
the x-axis,

dul =

()2 Pf2-3—
r2= pr

r3
(21)

with doublet-element axes parallel to

()2
K12

-3—
r2 ~

v
r3 1

(22)

—. . .—.—
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The square of the distance from the doublet

rA2 . xl
(

2+n2H2+ mw+y
1)2” Considering

then for the right wing with respect to the
-x1

11

element to A is

AO positive for sweepback,
xl

model, — = tanA@ =dY1

for the left wing, & = ta~= Having eliminated xl, the expres-
‘1

sion for the contribution of a single-image doublet is

r

Ji[
s

U1 ‘P
2

‘A -s
y12tan2Ao + ~2H2 +

(
W + Yl)1

z3/2 -

L

3[n2H2 + (~ + Yl)q

[
1

z 5/2
yl%nz~ + n2H2 +

( )]
mw+yl

It should be noted that a change of sign between the
halves of a wing makes no difference mathematically.
swept wing acts in exactly the same manner as a wing
angle ‘o “ Performing the integration and letting

aA’ =n
2&+m2

W2

bAl = 2m

C = ta.112A + 10

dA’ ‘4aA’c- bA’ 2()

S1=2

w

X*+l = Aa I + bA1sl + C(Sf)2

~=aXA- A1 - bAISt + C(sf)z

(23)

right and left
Therefore, the

yawed at an

-— –——— ——
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leads to the result

Ul=k

({

1-
A W2

()
l/2 dA1

XA+~

NACA TN 2372

--

1-

The total velocity increment at A may be obtdned by the same summation
as indicated for the straight wing in equation (15). However, for m
and n equal to zero, the constants @-ven above become:

For m = O,

‘A 1 .n2&
W2

bAt =0

dA’ = 4aA”

~A+ = XA_r = ‘Ai + ‘(’1)2 = XA~

and, for n = O,

aA1=m2

—.—
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{

(bAt + ,csf
)

, 1/2
(’A:)

dAt

f

1

()‘+ , 1/2

{

w~+(z3+fyw-+J-

L

--A

cdA1 ]++(L~)+SIP(~A::~IC) ,

2(@A’c+(bA’)2)

- 1)

2~
n=l

(m=O)
\l

1 r
:XA,)1/2[

.7
/

(25)
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In following a similar procecure to obtain u’B and u~c, it is found

that the constants are the same as for UA except that the subscripts

are changed to B and C, respectively, and n ~ n - .+ at B and

m~m-* at C. The summations are the same as for the straight
c

wing; namely,

.

f

, %’ 1-2a~1 ‘1@(~1)2-haB1.)()—l-— -
diB+ ‘ dBI c~’XB+’

,xBjl/2~’;csl)~+(&+&~(~-2~Bj-”

-l\

(26)

,.
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and

([(bcl +2c~l

)

%’ 4

L

1

,

15)((bc:)2_2ac)_’(4~’:::bc’)2) ,

l\
bcI

()

2% I ((
S! 2 bc1)2-4~’c

—l-— + )
cX& I d cl cdct~_f

})

Support Struts

(1

+ =7+

The method previously used to calculate the velocity ratios for
aerodynamic bodies may also be applied to support struts. However, in
order to avoid hfinite velocity increments at the junctions of struts
and model, it is necessazy to consider the support system in the tunnel

.— —.. ___ _ _ ___ _. _
T — -—.



16 NACA TN 2372

as an integral part of the model. With this viewpoint, velocity ratios
could also be calculated for struts in the same manner as for wings, in
which just the images are sumed in order to calculate uA. The span

of the struts would be constant at 2s/W = 1.0 h
for which H/W = ~.

Using points A and C, where C would now be at
ented tunnel, the velocity ratio uA/utC for half

be identical to those for complete wings or double

a reoriented tunnel

the top of the reori-
wings or struts would

struts. both COK
pletely spann@ the tunnel. ‘There is-one simple case fo~ which the
result is immediately known, namely, a stiglej centrally mounted,
unswept strut for which the two-dimensional result of 1/3 applies (see
section Two-Dimensional Wing). In general, H other than a single-strut
support system were used, the velocity ratio would be a function of the
strut spacing used as well as of the angle of sweep. The problem would
be further complicated by the presence of a rear strut, which is fre-
quently the case.

Because of the additional complexity involved and the expected
difficulty in separating the total wall velocity increment into the
separate effects due to the solid blocldng of the support system, model
wing, and model fuselage and to the wake blocking of each component, all

.

of which may have different veloci~ ratios, no general solution of the
“support-strutcase has.been presented. It wouldbe simpler and probably r,

more accurate to perform a complete calibration of the area in which a
model would normally be mounted, with the struts installed. During this
calibration, the wall pressures at B and C could also be obtained, thus
giving base values which include both the solid and wake blocking and
interference effects of the model support system.

NUMERICAL CALCULATIONS AND RESULTS

The methods used in summing the doubly imfinite series are
explained in detail in appenti A. Briefly, calculations are made for
each image up to a finite numbr n = m = nl. The remainders are

obtained by direct integration from nl to fiinity after making certain

simplifying assumptions. Unfortunately, the series convergence is not
very rapid and it is necessary to take nl as high as seven in most

cases. Fortunately, however, there is a negligible difference between
the remainder terms for the swept and straight wings, since the effect
of sweep rapidly diminishes as the distance between images and tunnel
increases. Hence the very difficult problem of attempting to titegrate
the complicated remainders for the swept wings is avoided. In all

—— —
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